Daybreakcx's Blog - Keep Programming! With Algorithm! With Fun!

Project Euler——Problem 19

原题与答案:

Problem 19

14 June 2002

You are given the following information, but you may prefer to do some research for yourself.

  • 1 Jan 1900 was a Monday.
  • Thirty days has September,
    April, June and November.
    All the rest have thirty-one,
    Saving February alone,
    Which has twenty-eight, rain or shine.
    And on leap years, twenty-nine.
  • A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.

How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?

Answer:171

 

分析与解答:

原题的意思是告诉了1900年1月1日是星期一,还有31日的月份,二月在闰年29天,平年28天,闰年是指年份被4整除,但是世纪年时必须被400整除的年份。最后根据这些已知的条件求20世纪(1901年1月1日到2000年12月31日)每个月第一天是星期天的数目。这题很简单,直接枚举就能得到解答,但是要注意题目中给定的是1900年1月1日是星期天,要转换为1901年1月1日开始,其实不难,只要加上1900年的天数365对7取余就得到1901年1月1日是星期几了,当然我们用0表示星期天。如下是我的源程序代码:

 

  1. #include<stdio.h>
  2. int days[12]={31,28,31,30,31,30,31,31,30,31,30,31},i,j,ans,cur;
  3. int main()
  4. {
  5.         ans=0;
  6.         cur=(1+365)%7;
  7.         for (i=1901;i<=2000;i++)
  8.                 for (j=0;j<12;j++)
  9.                 {
  10.                         if (cur==0) ans++;
  11.                         cur+=days[j];
  12.                         if (j==1&&(i%400==0||(i%100!=0&&i%4==0))) cur++;
  13.                         cur%=7;
  14.                 }
  15.         printf("%d\n",ans);
  16.         return 0;
  17. }

 

 

Project Euler——Problem 18

原题与答案:

Problem 18

31 May 2002

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 5
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)

Answer:1074

 

分析与解答:

这个是传说中的数字三角形,是利用动态规划的一个经典题目,题目的意思是求从顶端到底部的一条路径,使得路经的数字的和最大,而路径则是可以从上往下走到其左下或者右下的临近数字。思路最直接的是从上往下执行,但是有一种更好的方法求得,现在介绍这种方法,假设a[i][j]表示以第i行j列为顶点的三角形顶点到底边的最大路径值。对于底边的某个数字,其的最优值必然是本身,那么对于中间的值,我们可以得到动态规划方程:a[i][j]=maxn\{a[i+1][j],a[i+1][j+1]\}(1\leq i \leq n,1\leq j \leq i)。我们最后的目标就是得到顶端的值。当然这个题目如果用这种方式就免不了要先把数字先全部读入结束,如果用另一种方法的话,可以利用滚动数组来减少空间的消耗,我是利用从下往上的方式,这样免去了边界的处理,坐标和方程中略微不同,利用是从0开始的坐标,程序源代码如下所示:

 

  1. /*
  2. 75
  3. 95 64
  4. 17 47 82
  5. 18 35 87 10
  6. 20 04 82 47 65
  7. 19 01 23 75 03 34
  8. 88 02 77 73 07 63 67
  9. 99 65 04 28 06 16 70 92
  10. 41 41 26 56 83 40 80 70 33
  11. 41 48 72 33 47 32 37 16 94 29
  12. 53 71 44 65 25 43 91 52 97 51 14
  13. 70 11 33 28 77 73 17 78 39 68 17 57
  14. 91 71 52 38 17 14 91 43 58 50 27 29 48
  15. 63 66 04 68 89 53 67 30 73 16 69 87 40 31
  16. 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
  17. */
  18. #include<stdio.h>
  19. int a[15][15],i,j;
  20. int main()
  21. {
  22.         for (i=0;i<15;i++)
  23.                 for (j=0;j<=i;j++)
  24.                         scanf("%d",&a[i][j]);
  25.         for (i=13;i>=0;i--)
  26.                 for (j=0;j<=i;j++)
  27.                         a[i][j]+=a[i+1][j]>a[i+1][j+1]?a[i+1][j]:a[i+1][j+1];
  28.         printf("%d\n",a[0][0]);
  29.         return 0;
  30. }

 

 

Project Euler——Problem 17

原题与答案:

Problem 17

17 May 2002

If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.

If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?

NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.

Answer:21124

 

分析与解答:

这个题目是到现在为止最为恶心的题目,是求1到1000所构成的英文单词除掉空格的总长度。当然是可以笔算的,但是最麻烦的是去数单词的长度(我不喜欢英语)。笔算的过程很多种,我介绍一下我自己的吧,首先是1到9的总长度=3+3+5+4+4+3+5+5+4=36,然后是10到19总长度=3+6+6+8+8+7+7+9+8+8=70,接着从20到99都有规律可循了,20到90所有10倍数的单词总长度=6+6+5+5+5+7+6+6=46,而个位都是1到9,于是1到99的总长度=36×9+70+46×10=854。伴随1到999,1到99总是一轮轮出现的,总次数是10次,因此十位和各位总长度=854×10=8540。接下来就是百位了,百位有点麻烦,虽然是1到9数字每个各出现了100次,但是还有单词"hundred",此外还有"and",但是不影响计算,百位总长度=36×100+7×900+3×9×99=12573。于是就得到了1到999的总长度=8540+12573=21113。最后加上单词"onethousand",那么我们得到的答案=21113+11=21114。我的程序稍微偷懒了一下,用了枚举各个位的情况(等于枚举了1到999),累加,源代码如下:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. int ans=0,ones[10]={0,3,3,5,4,4,3,5,5,4},tens[10]={0,0,6,6,5,5,5,7,6,6},ten[10]={3,6,6,8,8,7,7,9,8,8},i,j,k;
  4. int main()
  5. {
  6.         for (i=0;i<10;i++)
  7.                 for (j=0;j<10;j++)
  8.                         for (k=0;k<10;k++)
  9.                         {
  10.                                 if (j!=1) ans+=ones[i]+tens[j]+ones[k];
  11.                                 else ans+=ones[i]+ten[k];
  12.                                 if (i) ans+=10;
  13.                                 if (i&&j+k==0) ans-=3;
  14.                         }
  15.         printf("%d\n",ans+strlen("onethousand"));
  16.         return 0;
  17. }

 

 

Project Euler——Problem 16

原题与答案:

Problem 16

03 May 2002

2^(15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.

What is the sum of the digits of the number 2^(1000)?

Answer:1366

 

分析与解答:

这个题目题意很直接,就是求2^{1000}各位数的和,直接的做法就是用高精度乘法直接求得结果,然后进行求和,程序也十分容易编写,2^{1000}的位数是log_{10}2^{1000}=302。程序源代码如下所示:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. int a[400],i,j,s;
  4. int main()
  5. {
  6.         memset(a,0,sizeof(a));
  7.         a[0]=a[1]=1;
  8.         for (i=1;i<=1000;i++)
  9.         {
  10.                 for (j=1,s=0;j<=a[0];j++)
  11.                 {
  12.                         a[j]=a[j]*2+s;
  13.                         s=a[j]/10;
  14.                         a[j]%=10;
  15.                 }
  16.                 if (s) a[++a[0]]=s;
  17.         }
  18.         for (i=1,s=0;i<=a[0];i++) s+=a[i];
  19.         printf("%d\n",s);
  20.         return 0;
  21. }

 

 

Project Euler——Problem 15

原题与答案:

Problem 15

19 April 2002

Starting in the top left corner of a 2×2 grid, there are 6 routes (without backtracking) to the bottom right corner.

How many routes are there through a 20×20 grid?

Answer:137846528820

 

分析与解答:

这个题目也十分经典了,问的是从一个20×20的格子的左上角走到右下 角有多少种走法。一个经典的解法就是利用组合数学的知识,实际上不论你怎么走,最后都是走了20条横边和20条竖边,换句话说也就是20条横边和竖边的组合问题,横边和竖边自己内部都是自排序的,因此问题公式就可以很容易得出,假设是n×m的格子,那么解决的方案数就是C_{n+m}^n,于是这个题目的结果可以直接笔算出来就是C_{40}^{20}=137846528820。当然,写个程序也很快,注意结果是一个64位整数。程序源代码如下所示:

  1. #include<stdio.h>
  2. int i;
  3. long long ans;
  4. int main()
  5. {
  6.         ans=1;
  7.         for (i=1;i<=20;i++)
  8.         {
  9.                 ans=ans*(20+i);
  10.                 ans/=i;
  11.         }
  12.         printf("%lld\n",ans);
  13.         return 0;
  14. }

 

Project Euler——Problem 14

原题与答案:

Problem 14

05 April 2002

The following iterative sequence is defined for the set of positive integers:

n n/2 (n is even)
n 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence:

13 40 20 10 5 16 8 4 2 1

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.

Which starting number, under one million, produces the longest chain?

NOTE: Once the chain starts the terms are allowed to go above one million.

Answer:837799

 

分析与解答:

这个题目整体上出的很不错,题目意思很明朗,就是一个迭代序列,如果数列的某个项n是奇数,那么下一项就是3×n+1,否则就是n/2,根据这样构造的数列最终会得到项1(未证明),假设1为数列的尾项,求在1000000内以哪个数字为头部的序列最长。我采取的方案是半记忆的搜索,假设a[i]表示以i开头的序列的长度,初始时候肯定是a[1]=1,那么就有了公式\[a[i]=\begin{cases}a[3*i+1] & i \% 2==1 \\ a[i/2] & i \% 2==0 \end{cases} \]。虽然项目的起始是1000000以内的,但是其链的成员肯定会超过1000000(比如第一项是999999),于是我们不能完全记忆其状态,我采用的方案是记忆1000000以内的,其余的1000000以外的都每次重新计算过,这样对于1000000以内的都可以直接得到结果,只算一次,对于1000000以外的都当场计算,省时间的同时也保证了计算不溢出。同时要注意的一点是,序列的项目用32位整数是无法完全存储的,需要64位存储,否则也会发生数组的下溢出,对于64位整数尽量不要用位操作,因为其存储结构有时候不是你所想象的,我就曾经因为这个而郁闷了一段时间,其余的都比较容易实现了,实现源代码如下所示:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. int a[1000001],i,ans;
  4. int calc(long long s)
  5. {
  6.         if (s<=1000000)
  7.                 return a[s]==-1?(a[s]=(s%2==1)?calc(s*3+1)+1:calc(s/2)+1):a[s];
  8.         else
  9.                 return (s%2==1)?calc(s*3+1)+1:calc(s/2)+1;
  10. }
  11. int main()
  12. {
  13.         memset(a,-1,sizeof(a));
  14.         a[1]=ans=1;
  15.         for (i=2;i<=1000000;i++)
  16.         {
  17.                 if (a[i]==-1) calc(i);
  18.                 if (a[i]>a[ans]) ans=i;
  19.         }
  20.         printf("%d\n",ans);
  21.         return 0;
  22. }

 

 

Project Euler——Problem 13

原题与答案:

Problem 13

22 March 2002

Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.

37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690
Answer:5537376230
 

分析与解答:

这个题目很恶心,本身题目的初衷是好的,求100个50位的数的和的前10位,其实是一个简单的高精度,但是题目给的数据文本很多,本身粘贴到程序中处理很难受,反正最后还是把这个题目拿下了,只要保持数据完整,最后得出正确结果是没问题的,下面是源程序代码:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. int a[160],i,j;
  4. char str[5005]="37107287533902102798797998220837590246510135740250463769376774900097126481248969700780504170182605387432498619952474105947423330951305812372661730962991942213363574161572522430563301811072406154908250230675882075393461711719803104210475137780632466768926167069662363382013637841838368417873436172675728112879812849979408065481931592621691275889832738442742289174325203219235894228767964876702721893184745144573600130643909116721685684458871160315327670386486105843025439939619828917593665686757934951621764571418565606295021572231965867550793241933316490635246274190492910143244581382266334794475817892575867718337217661963751590579239728245598838407582035653253593990084026335689488301894586282278288018119938482628201427819413994056758715117009439035398664372827112653829987240784473053190104293586865155060062958648615320752733719591914205172558297169388870771546649911559348760353292171497005693854370070576826684624621495650076471787294438377604532826541087568284431911906346940378552177792951453612327252500029607107508256381565671088525835072145876576172410976447339110607218265236877223636045174237069058518606604482076212098132878607339694128114266041808683061932846081119106155694051268969251934325451728388641918047049293215058642563049483624672216484350762017279180399446930047329563406911573244438690812579451408905770622942919710792820955037687525678773091862540744969844508330393682126183363848253301546861961243487676812975343759465158038628759287849020152168555482871720121925776695478182833757993103614740356856449095527097864797581167263201004368978425535399209318374414978068609844840309812907779179908821879532736447567559084803087086987551392711854517078544161852424320693150332599594068957565367821070749269665376763262354472106979395067965269474259770973916669376304263398708541052684708299085211399427365734116182760315001271653786073615010808570091499395125570281987460043753582903531743471732693212357815498262974255273730794953759765105305946966067683156574377167401875275889028025717332296191766687138199318110487701902712526768027607800301367868099252546340106163286652636270218540497705585629946580636237993140746255962240744869082311749777923654662572469233228109171419143028819710328859780666976089293863828502533340334413065578016127815921815005561868836468420090470230530811728164304876237919698424872550366387845831148769693215490281042402013833512446218144177347063783299490636259666498587618221225225512486764533677201869716985443124195724099139590089523100588229554825530026352078153229679624948164195386821877476085327132285723110424803456124867697064507995236377742425354112916842768655389262050249103265729672370191327572567528565324825826546309220705859652229798860272258331913126375147341994889534765745501184957014548792889848568277260777137214037988797153829820378303147352772158034814451349137322665138134829543829199918180278916522431027392251122869539409579530664052326325380441000596549391598795936352974615218550237130764225512118369380358038858490341698116222072977186158236678424689157993532961922624679571944012690438771072750481023908955235974572318970677254791506150550495392297953090112996751986188088225875314529584099251203829009407770775672113067397083047244838165338735023408456470580773088295917476714036319800818712901187549131054712658197623331044818386269515456334926366572897563400500428462801835170705278318394258821455212272512503275512160354698120058176216521282765275169129689778932238195734329339946437501907836945765883352399886755061649651847751807381688378610915273579297013376217784275219262340194239963916804498399317331273132924185707147349566916674687634660915035914677504995186714302352196288948901024233251169136196266227326746080059154747183079839286853520694694454072476841822524674417161514036427982273348055556214818971426179103425986472045168939894221798260880768528778364618279934631376775430780936333301898264209010848802521674670883215120185883543223812876952786713296124747824645386369930090493103636197638780396218407357239979422340623539380833965132740801111666627891981488087797941876876144230030984490851411606618262936828367647447792391803351109890697907148578694408955299065364044742557608365997664579509666024396409905389607120198219976047599490197230297649139826800329731560371200413779037855660850892521673093931987275027546890690370753941304265231501194809377245048795150954100921645863754710598436791786391670211874924319957006419179697775990283006991536871371193661495281130587638027841075444973307840789923115535562561142322423255033685442488917353448899115014406480203690680639606723221932041495354150312888033953605329934036800697771065056663195481234880673210146739058568557934581403627822703280826165707739483275922328459417065250945123252306082291880205877731971983945018088807242966198081119777158542502016545090413245809786882778948721859617721078384350691861554356628840622574736922845095162084960398013400172393067166682355524525280460972253503534226472524250874054075591789781264330331690";
  5. int main()
  6. {
  7.         memset(a,0,sizeof(a));
  8.         a[0]=50;
  9.         for (i=0;i<5000;i+=50)
  10.                 for (j=0;j<50;j++)
  11.                         a[50-j]+=str[i+j]-'0';
  12.         for (i=1;i<=a[0];i++)
  13.                 if (a[i]>=10)
  14.                 {
  15.                         if (i==a[0]) a[++a[0]]=a[i]/10;
  16.                         else a[i+1]+=a[i]/10;
  17.                         a[i]%=10;
  18.                 }
  19.         for (i=a[0];i>a[0]-10;i--)
  20.                 printf("%d",a[i]);
  21.         printf("\n");
  22.         return 0;
  23. }

 

 

Project Euler——Problem 12

原题与答案:

Problem 12

08 March 2002

The sequence of triangle numbers is generated by adding the natural numbers. So the 7^(th) triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?

Answer:76576500

  

分析与解答:

这个题目本身不难,题意是求第一个约数个数超过500的“三角数”(第n个“三角数”是自然数1到n的和)。这个题目的难点在于求一个整数的约数个数,我们可以利用质因数分解的方法来进行统计,假设一个数的质因素分解为s={p_1}^{t_1}*{p_2}^{t_2}*...*{p_k}^{t_k},那么他的约数个数是根据每个质因子的次数来决定的,即我们要的质因数个数是(t_1+1)*(t_2+1)*...*(t_k+1),这个很容易理解,每个约数对应的质因数次数不会超过原数,同时也是每个质因数的次数的组合,可能的情况从0到最大的次数可取,然后利用乘法原理即我们的结果。因此本题只要利用质数的试除即可,我的素数表只开到10000,这样就可以对于100000000内的数进行质因数分解,初步估计答案是够的,实际上是正好比答案大一点。因此可以得到如下程序源代码:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. bool nprime[10001];
  4. int a[1300],i,j;
  5. int calc(int s)
  6. {
  7.         int i,t,ret=1;
  8.         for (i=1;i<=a[0]&&s!=1;i++)
  9.         {
  10.                 t=0;
  11.                 while (s%a[i]==0)
  12.                 {
  13.                         t++;
  14.                         s/=a[i];
  15.                 }
  16.                 ret*=t+1;
  17.         }
  18.         if (s!=1) ret*=2;
  19.         return ret;
  20. }
  21. int main()
  22. {
  23.         memset(nprime,false,sizeof(nprime));
  24.         a[0]=0;
  25.         for (i=2;i<=10000;i++)
  26.                 if (!nprime[i])
  27.                 {
  28.                         a[++a[0]]=i;
  29.                         if (i<=100)
  30.                                 for (j=i*i;j<=10000;j+=i)
  31.                                         nprime[j]=true;
  32.                 }
  33.         for (i=1,j=0;;i++)
  34.         {
  35.                 j+=i;
  36.                 if (calc(j)>=500) break;
  37.         }
  38.         printf("%d\n",j);
  39.         return 0;
  40. }

 

 

Project Euler——Problem 11

原题与答案:

Problem 11

22 February 2002

In the 20×20 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is 26 × 63 × 78 × 14 = 1788696.

What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 20×20 grid?

Answer:70600674

 

分析与解答:

这个题目的大意是说在20×20的数值阵中,排成一条线的四个相邻的数的最大乘积是多少,题目的意思十分明了,只要枚举这些所有的情况就能得出最后的结果,如下是源程序代码:

 

  1. #include<stdio.h>
  2. int a[20][20]=
  3. {
  4.         {8,2,22,97,38,15,0,40,0,75,4,5,7,78,52,12,50,77,91,8},
  5.         {49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,4,56,62,0},
  6.         {81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,3,49,13,36,65},
  7.         {52,70,95,23,4,60,11,42,69,24,68,56,1,32,56,71,37,2,36,91},
  8.         {22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80},
  9.         {24,47,32,60,99,3,45,2,44,75,33,53,78,36,84,20,35,17,12,50},
  10.         {32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70},
  11.         {67,26,20,68,2,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21},
  12.         {24,55,58,5,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72},
  13.         {21,36,23,9,75,0,76,44,20,45,35,14,0,61,33,97,34,31,33,95},
  14.         {78,17,53,28,22,75,31,67,15,94,3,80,4,62,16,14,9,53,56,92},
  15.         {16,39,5,42,96,35,31,47,55,58,88,24,0,17,54,24,36,29,85,57},
  16.         {86,56,0,48,35,71,89,7,5,44,44,37,44,60,21,58,51,54,17,58},
  17.         {19,80,81,68,5,94,47,69,28,73,92,13,86,52,17,77,4,89,55,40},
  18.         {04,52,8,83,97,35,99,16,7,97,57,32,16,26,26,79,33,27,98,66},
  19.         {88,36,68,87,57,62,20,72,3,46,33,67,46,55,12,32,63,93,53,69},
  20.         {04,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36},
  21.         {20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,4,36,16},
  22.         {20,73,35,29,78,31,90,1,74,31,49,71,48,86,81,16,23,57,5,54},
  23.         {01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,1,89,19,67,48}
  24. },i,j,ans=-1;
  25. int maxn(int s,int t)
  26. {
  27.         return s>t?s:t;
  28. }
  29. int main()
  30. {
  31.         for (i=0;i<20;i++)
  32.                 for (j=0;j<20;j++)
  33.                 {
  34.                         if (j+3<20)
  35.                                 ans=maxn(a[i][j]*a[i][j+1]*a[i][j+2]*a[i][j+3],ans);
  36.                         if (i+3<20)
  37.                                 ans=maxn(a[i][j]*a[i+1][j]*a[i+2][j]*a[i+3][j],ans);
  38.                         if (i+3<20&&j+3<20)
  39.                                 ans=maxn(a[i][j]*a[i+1][j+1]*a[i+2][j+2]*a[i+3][j+3],ans);
  40.                         if (i+3<20&&j-3>=0)
  41.                                 ans=maxn(a[i][j]*a[i+1][j-1]*a[i+2][j-2]*a[i+3][j-3],ans);
  42.                 }
  43.         printf("%d\n",ans);
  44.         return 0;
  45. }

 

 

Project Euler——Problem 10

原题与答案:

Problem 10

08 February 2002

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.

Answer:142913828922

 

分析与解答:

题目的意思很容易理解,就是求2000000以下的素数的和,这个题目又是一个素数题,我们很容易写出C代码,但是要注意,结果是超出32位整数的,如下是程序源代码:

 

  1. #include<stdio.h>
  2. #include<string.h>
  3. bool nprime[2000001];
  4. long long ans=0;
  5. int i,j;
  6. int main()
  7. {
  8.         memset(nprime,false,sizeof(nprime));
  9.         for (i=2;i<=1414;i++)
  10.                 if (!nprime[i])
  11.                 {
  12.                         ans+=i;
  13.                         for (j=i*i;j<=2000000;j+=i)
  14.                                 nprime[j]=true;
  15.                 }
  16.         for (i=1415;i<=2000000;i++)
  17.                 if (!nprime[i]) ans+=i;
  18.         printf("%lld\n",ans);
  19.         return 0;
  20. }